*離子交換/吸附法:使用對鍺離子有特異性吸附能力的樹脂或吸附材料,讓含鍺溶液流過,鍺被選擇性吸附,再通過洗脫劑回收,得到較純的鍺溶液。
*精煉與產(chǎn)品制備:經(jīng)過富集純化得到的鍺化合物(通常是二氧化鍺或四氯化鍺),還需要進(jìn)一步精煉才能得到高純度的鍺材料。例如,將二氧化鍺在高溫下用氫氣還原,可以得到金屬鍺錠;或?qū)⑺穆然N進(jìn)行精餾提純,作為制備高純鍺或光纖用四氯化鍺的原料。最終產(chǎn)品形態(tài)取決于市場需求,可以是鍺錠、鍺粒、高純二氧化鍺或特定的有機(jī)鍺中間體。
有機(jī)鍺廢料回收并非易事,實(shí)踐中面臨一些挑戰(zhàn):
*成分復(fù)雜多變:不同行業(yè)、不同工藝產(chǎn)生的廢料成分差異巨大,有機(jī)物種類繁多,可能含有氯、氟、硫等其他元素,這對回收工藝的適應(yīng)性和穩(wěn)定性提出了高要求。往往需要“一料一策”,進(jìn)行詳細(xì)的成分分析和小試,才能確定回收方案。
*二次污染控制:回收過程本身可能產(chǎn)生廢氣、廢水或新的固體廢物。例如,高溫處理產(chǎn)生的煙氣需經(jīng)過除塵、脫硫、脫硝等凈化;濕法處理產(chǎn)生的廢水含有余酸、重金屬離子等,多元化經(jīng)過中和、沉淀、深度處理達(dá)標(biāo)后才能排放。整個回收體系多元化配套完善的環(huán)境保護(hù)設(shè)施。
*經(jīng)濟(jì)可行性平衡:回收技術(shù)的研發(fā)與應(yīng)用,需要平衡技術(shù)成本與回收產(chǎn)出的價值。對于鍺含量極低或處理難度的廢料,其回收的經(jīng)濟(jì)性需要謹(jǐn)慎評估。持續(xù)的技術(shù)創(chuàng)新旨在提高回收率、降低能耗和物耗,提升整體經(jīng)濟(jì)效益。
未來,通過加強(qiáng)產(chǎn)廢單位與專業(yè)回收技術(shù)機(jī)構(gòu)之間的協(xié)作,推動回收工藝的標(biāo)準(zhǔn)化與綠色化創(chuàng)新,有機(jī)鍺廢料的回收將更加、和環(huán)保。這不僅能夠有效緩解鍺資源的供應(yīng)壓力,減少原生開采的環(huán)境足跡,也為其他稀散金屬及有價值材料的循環(huán)利用提供了可借鑒的思路。最終,讓每一份珍貴的元素都能在工業(yè)生態(tài)循環(huán)中找到其應(yīng)有的位置,是實(shí)現(xiàn)資源永續(xù)利用的必然方向。
鍺廢料主要來源于鍺生產(chǎn)過程中的邊角料、廢舊電子產(chǎn)品中的鍺元件、以及光纖通信等領(lǐng)域廢棄的鍺材料。這些廢料中鍺的含量不一,回收時需要根據(jù)廢料的具體成分和含量選擇合適的回收方法。常見的鍺廢料回收方法包括化學(xué)法、物理法和電化學(xué)法等。

